窄间隙熔化极气体保护焊简介
窄间隙熔化极气体保护焊是1975年后研制成功的,这一工艺是在采用特殊的焊丝弯曲结构以使焊丝保持弯曲,从而解决坡口机对坡口侧壁的熔透问题之后得以实现的〔8〕。
窄间隙熔化极气体保护焊是利用电弧摆动来到达焊接钢板两侧壁的一种方法。在平焊方法中,为了使I形坡口的两边充分焊透,使电弧指向坡口两侧壁,采用了各种方法:①在焊丝进入坡口前,使焊丝弯曲的方法;②使焊丝在垂直于焊接方向上摆动的方法;③麻花状绞丝方法;④药芯焊丝的交流弧焊方法;⑤采用大直径实心焊丝的交流弧焊方法等。另外,也有采用φ(Ar)30%+φ(CO2)70%作为保护气体与ф1.6mm实心焊丝相配合的气体保护焊方法,用来焊接特殊形状复杂的接头。在横焊方法中,为了防止I形坡口内熔融金属下淌,以便得到均匀的焊道,提出了如下焊接方法:利用焊接电流的周期性变化,使焊丝摆动或将坡口分成上下层的焊接方法,以及将2种方式组合起来的焊接方法等。在立焊窄间隙MAG焊接方法中,为了保证坡口两侧焊透,研制了摆动焊丝的焊接方法以及焊接电流与焊丝摆动同步变化的焊接方法。
工业上成熟的NG-GMAW技术
表面张力过渡<5>(Suface Tension Transfer)技术采用了7个国家的20余项专利,最早于1993年由美国林肯公司的高级工程师Stava发表在Welding Journal上。表面张力过渡技术源于短路过渡技术,但又不同于传统的短路过渡技术,它主要通过表面张力对熔滴的作用实现熔滴过渡。表面张力过渡理论认为,从熔滴与熔池开始接触直到缩颈小桥断裂为止的熄弧期间内,熔滴上没有等离子流力、电弧推力、斑点力、金属蒸汽反作用力等作用力,此时若不考虑重力与电磁力的作用,则熔滴完全在熔滴与熔池融合界面的表面张力作用下完成了向熔池的铺展、缩颈、断裂,在短路期间内,缩颈小桥形成时与存在期间输出小的焊接电流与电弧电压,极大地减少了短路液态小桥的爆炸程度,从而减小了飞溅。
表面张力过渡工艺是熔化极气体保护焊方法中短路过渡工艺技术的一次巨大技术进步,它具有以下技术优势:①飞溅率非常低,熔滴呈轴向过渡;②焊接烟尘量小;③作业环境更舒适(低烟尘、低飞溅、低光辐射);④低热输入条件下熔合优良;⑤具有良好的打底焊道全位置单面焊双面成形能力;⑥操作更容易,作业效率更高。
|